0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PEB 3081 F V1.4

PEB 3081 F V1.4

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LQFP48

  • 描述:

    IC TELECOM INTERFACE TQFP-48

  • 数据手册
  • 价格&库存
PEB 3081 F V1.4 数据手册
Da ta S he et , D S 1 , F eb . 2 00 3 SBCX-X S/T Bus Interface Circuit Extended PEB 3081, Version 1.4 Wired Communications N e v e r s t o p t h i n k i n g . ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®, FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®, MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®, SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®, 10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG. 10BaseS™, EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG. Microsoft® is a registered trademark of Microsoft Corporation. Linux® is a registered trademark of Linus Torvalds. The information in this document is subject to change without notice. Edition 2003-02-04 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2003. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Data Sheet Revision History: 2003-02-04 Previous Version: Data Sheet, DS1, V1.3, 2000-07-21 Page Subjects (major changes since last revision) Chapter 1 Comparison SBCX/SBCX-X Chapter 3.3.6.2 S- Transceiver Synchronization New Chapter 3.3.10 Test Functions extended Chapter 3.7.1.1 CDA Handler Description extended Chapter 3.7.5.1 TIC Bus Access Control: Note added Chapter 5.6 IOM-2 Interface Timing: Explanation added Chapter 5.9 S-Transceiver Chapter 5.10 Recommended Transformer Specification: Changed Chapter 5.11 Line Overload Protection added Chapter 5.12 EMC/ESD added DS 1 SBCX-X PEB 3081 Table of Contents Page 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.6.1 3.3.6.2 3.3.7 3.3.8 3.3.9 3.3.10 3.4 3.4.1 3.4.2 3.4.3 3.5 3.5.1 3.5.1.1 3.5.1.2 3.5.1.3 3.5.1.4 3.5.2 3.5.2.1 3.5.2.2 3.5.2.3 Description of Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Functions and Device Architecture . . . . . . . . . . . . . . . . . . . . . . . Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation Indication via Pin ACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface Multiframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Transfer and Delay between IOM-2 and S/T . . . . . . . . . . . . . . . . Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Protection Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Transceiver Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T Interface Delay Compensation (TE/LT-T Mode) . . . . . . . . . . . . . . . Level Detection Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transceiver Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of the Receive PLL (DPLL) . . . . . . . . . . . . . . . . . . . . . . . . . Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Clock Output C768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control of Layer-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Machine TE and LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . States (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C/I Codes (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infos on S/T (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . States (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C/I Codes (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 4 11 14 15 16 23 23 25 26 27 29 31 33 35 36 38 40 42 45 46 47 47 49 50 50 50 51 53 56 56 57 58 60 60 62 64 66 67 67 68 69 2003-02-04 SBCX-X PEB 3081 Table of Contents Page 3.5.2.4 3.5.3 3.5.3.1 3.5.3.2 3.5.3.3 3.5.4 3.6 3.6.1 3.6.2 3.6.3 3.7 3.7.1 3.7.1.1 3.7.2 3.7.2.1 3.7.2.2 3.7.3 3.7.3.1 3.7.3.2 3.7.3.3 3.7.3.4 3.7.3.5 3.7.3.6 3.7.4 3.7.5 3.7.5.1 3.7.5.2 3.7.5.3 3.7.5.4 3.7.6 3.8 Infos on S/T (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 States (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 C/I Codes (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Command / Indicate Channel Codes (C/I0) - Overview . . . . . . . . . . . . . 75 Control Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Activation initiated by the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Activation initiated by the Network Termination NT . . . . . . . . . . . . . . . . 78 IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 IOM-2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Controller Data Access (CDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Serial Data Strobe Signal and Strobed Data Clock . . . . . . . . . . . . . . . 94 Serial Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Strobed IOM-2 Bit Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 IOM-2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Error Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 MONITOR Channel Programming as a Master Device . . . . . . . . . . 103 MONITOR Channel Programming as a Slave Device . . . . . . . . . . . 103 MONITOR Time-Out Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 MONITOR Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 C/I Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 TIC Bus D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . 108 S-Bus Priority Mechanism for D-Channel . . . . . . . . . . . . . . . . . . . . 110 S-Bus D-Channel Control in LT-T . . . . . . . . . . . . . . . . . . . . . . . . . . 112 D-Channel Control in the Intelligent NT (TIC- and S-Bus) . . . . . . . . 112 Activation/Deactivation of IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . 116 Auxiliary Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9 Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transceiver and C/I Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TR_MODE2 - Transceiver Mode Register 2 . . . . . . . . . . . . . . . . . . . . CIR0 - Command/Indication Receive 0 . . . . . . . . . . . . . . . . . . . . . . . CIX0 - Command/Indication Transmit 0 . . . . . . . . . . . . . . . . . . . . . . . CIR1 - Command/Indication Receive 1 . . . . . . . . . . . . . . . . . . . . . . . CIX1 - Command/Indication Transmit 1 . . . . . . . . . . . . . . . . . . . . . . . TR_CONF0 - Transceiver Configuration Register 0 . . . . . . . . . . . . . . TR_CONF1 - Transceiver Configuration Register 1 . . . . . . . . . . . . . . TR_CONF2 - Transmitter Configuration Register 2 . . . . . . . . . . . . . . TR_STA - Transceiver Status Register . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 5 120 126 126 127 128 128 129 129 131 131 133 2003-02-04 SBCX-X PEB 3081 Table of Contents 4.1.10 4.1.11 4.1.12 4.1.13 4.1.14 4.1.15 4.1.16 4.1.17 4.1.18 4.1.19 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 4.3.11 4.3.12 4.3.13 4.3.14 4.3.15 4.3.16 4.3.17 4.3.18 4.3.19 4.3.20 4.3.21 4.4 4.4.1 4.4.2 4.4.3 Page TR_CMD - Transceiver Command Register . . . . . . . . . . . . . . . . . . . . SQRR1 - S/Q-Channel Receive Register 1 . . . . . . . . . . . . . . . . . . . . SQXR1- S/Q-Channel TX Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . SQRR2 - S/Q-Channel Receive Register 2 . . . . . . . . . . . . . . . . . . . . . SQXR2 - S/Q-Channel TX Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . SQRR3 - S/Q-Channel Receive Register 3 . . . . . . . . . . . . . . . . . . . . SQXR3 - S/Q-Channel TX Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . ISTATR - Interrupt Status Register Transceiver . . . . . . . . . . . . . . . . . MASKTR - Mask Transceiver Interrupt . . . . . . . . . . . . . . . . . . . . . . . . TR_MODE - Transceiver Mode Register 1 . . . . . . . . . . . . . . . . . . . . . Auxiliary Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACFG1 - Auxiliary Configuration Register 1 . . . . . . . . . . . . . . . . . . . . ACFG2 - Auxiliary Configuration Register 2 . . . . . . . . . . . . . . . . . . . . AOE - Auxiliary Output Enable Register . . . . . . . . . . . . . . . . . . . . . . . ARX - Auxiliary Interface Receive Register . . . . . . . . . . . . . . . . . . . . ATX - Auxiliary Interface Transmit Register . . . . . . . . . . . . . . . . . . . . IOM-2 and MONITOR Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CDAxy - Controller Data Access Register xy . . . . . . . . . . . . . . . . . . . XXX_TSDPxy - Time Slot and Data Port Selection for CHxy . . . . . . . CDAx_CR - Control Register Controller Data Access CH1x . . . . . . . TR_CR - Control Register Transceiver Data (IOM_CR.CI_CS=0) . . . TRC_CR - Control Register Transceiver C/I0 (IOM_CR.CI_CS=1) . . . DCI_CR - Control Register for CI1 Handler (IOM_CR.CI_CS=0) . . . . DCIC_CR - Control Register for CI0 Handler (IOM_CR.CI_CS=1) . . . MON_CR - Control Register Monitor Data . . . . . . . . . . . . . . . . . . . . . SDSx_CR - Control Register Serial Data Strobe x . . . . . . . . . . . . . . . IOM_CR - Control Register IOM Data . . . . . . . . . . . . . . . . . . . . . . . . STI - Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . ASTI - Acknowledge Synchronous Transfer Interrupt . . . . . . . . . . . . MSTI - Mask Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . SDS_CONF - Configuration Register for Serial Data Strobes . . . . . . MCDA - Monitoring CDA Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOR - MONITOR Receive Channel . . . . . . . . . . . . . . . . . . . . . . . . . . MOX - MONITOR Transmit Channel . . . . . . . . . . . . . . . . . . . . . . . . . MOSR - MONITOR Interrupt Status Register . . . . . . . . . . . . . . . . . . . MOCR - MONITOR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . MSTA - MONITOR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . MCONF - MONITOR Configuration Register . . . . . . . . . . . . . . . . . . . Interrupt and General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISTA - Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MASK - Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AUXI - Auxiliary Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . Data Sheet 6 134 135 136 136 137 137 137 137 138 139 140 140 140 141 141 142 142 142 143 144 145 146 146 147 148 149 150 152 153 153 154 155 155 155 156 156 157 157 158 158 159 159 2003-02-04 SBCX-X PEB 3081 Table of Contents Page 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 AUXM - Auxiliary Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MODE1 - Mode1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MODE2 - Mode2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID - Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SRES - Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIMR - Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 160 162 163 163 164 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IOM-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Control Interface (SCI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Transformer Specification . . . . . . . . . . . . . . . . . . . . . . . Line Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC / ESD Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 165 166 166 168 169 169 172 173 174 175 176 177 6 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Data Sheet 7 2003-02-04 SBCX-X PEB 3081 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Data Sheet Page Logic Symbol of the SBCX-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Applications of the SBCX-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Pin Configuration of the SBCX-X (P-MQFP-44) . . . . . . . . . . . . . . . . . 17 Pin Configuration of the SBCX-X (P-TQFP-48) . . . . . . . . . . . . . . . . . . 18 Functional Block Diagram of the SBCX-X . . . . . . . . . . . . . . . . . . . . . . 24 Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Interrupt Status and Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Timer Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ACL Indication of Activated Layer 1 on TE Side . . . . . . . . . . . . . . . . . 35 ACL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Wiring Configurations in User Premises . . . . . . . . . . . . . . . . . . . . . . . 37 S/T-Interface Line Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Frame Structure at Reference Points S and T (ITU I.430). . . . . . . . . . 39 Data Delay between IOM-2 and S/T Interface (TE mode only) . . . . . . 42 Data Delay between IOM-2 and S/T Interface with S/G Bit Evaluation (TE mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Data Delay between IOM-2 and S/T Interface with 8 IOM Channels (LT-S/NT mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Data Delay between IOM-2 and S/T Interface with 3 IOM Channels and Maximum Receive Delay (LT-S/NT mode only). . . . . . . . . . . . . . . . . . 44 Equivalent Internal Circuit of the Transmitter Stage . . . . . . . . . . . . . . 45 Equivalent Internal Circuit of the Receiver Stage . . . . . . . . . . . . . . . . 46 Connection of Line Transformers and Power Supply to the SBCX-X . 47 External Circuitry for Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . . 48 External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . . 49 Disabling of S/T Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 External Loop at the S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Clock System of the SBCX-X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Phase Relationships of SBCX-X Clock Signals . . . . . . . . . . . . . . . . . . 56 Buffered Oscillator Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Layer-1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . 61 State Transition Diagram of Unconditional Transitions (TE, LT-T) . . . 62 State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Example of Activation/Deactivation Initiated by the Terminal . . . . . . . 76 8 2003-02-04 SBCX-X PEB 3081 List of Figures Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76 Data Sheet Page Example of Activation/Deactivation initiated by the Terminal (TE). Activation/Deactivation completely under Software Control . . . . . . . . 77 Example of Activation/Deactivation initiated by the Network Termination (NT). Activation/Deactivation completely under Software Control . . . . 78 IOM“-2 Frame Structure in Terminal Mode. . . . . . . . . . . . . . . . . . . . . . 80 Multiplexed Frame Structure of the IOM-2 Interface in Non-TE Timing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Architecture of the IOM Handler (Example Configuration). . . . . . . . . . 83 Data Access via CDAx1 and CDAx2 Register Pairs . . . . . . . . . . . . . . 85 Examples for Data Access via CDAxy Registers . . . . . . . . . . . . . . . . . 86 Data Access when Looping TSa from DU to DD . . . . . . . . . . . . . . . . . 87 Data Access when Shifting TSa to TSb on DU (DD) . . . . . . . . . . . . . . 88 Example for Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Interrupt Structure of the Synchronous Data Transfer . . . . . . . . . . . . . 91 Examples for the Synchronous Transfer Interrupt Control with one Enabled STIxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Strobed IOM-2 Bit Clock. Register SDS_CONF Programmed to 01H . 96 Examples of MONITOR Channel Applications in IOM-2 TE Mode . . . 97 MONITOR Channel Protocol (IOM-2) . . . . . . . . . . . . . . . . . . . . . . . . . 99 Monitor Channel, Transmission Abort Requested by the Receiver . . 102 Monitor Channel, Transmission Abort Requested by the Transmitter 102 Monitor Channel, Normal End of Transmission . . . . . . . . . . . . . . . . . 102 MONITOR Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 CIC Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Applications of TIC Bus in IOM-2 Bus Configuration . . . . . . . . . . . . . 108 Structure of Last Octet of Ch2 on DU . . . . . . . . . . . . . . . . . . . . . . . . 109 Structure of Last Octet of Ch2 on DD . . . . . . . . . . . . . . . . . . . . . . . . 110 D-Channel Access Control on the S-Interface . . . . . . . . . . . . . . . . . . 111 Data Flow for Collision Resolution Procedure in Intelligent NT . . . . . 115 Deactivation of the IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Activation of the IOM-2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Register Mapping of the SBCX-X . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Input/Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . 169 IOM-2 Timing (TE mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 IOM-2 Timing (LT-S, LT-T, NT mode) . . . . . . . . . . . . . . . . . . . . . . . . 170 Definition of Clock Period and Width . . . . . . . . . . . . . . . . . . . . . . . . . 171 SCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Reset Signal RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Maximum Line Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Transformer Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9 2003-02-04 SBCX-X PEB 3081 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Data Sheet Page Comparison of the SBCX-X with the Previous Version SBCX . . . . . . . 11 SBCX-X Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . 19 Host Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Header Byte Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reset Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SBCX-X Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 S/Q-Bit Position Identification and Multiframe Structure . . . . . . . . . . . 40 Clock Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Examples for Synchronous Transfer Interrupts . . . . . . . . . . . . . . . . . . 91 CDA Register Combinations with Correct Read/Write Access . . . . . . 93 Transmit Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Receive Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SBCX-X Configuration Settings in Intelligent NT Applications . . . . . . 113 AUX Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 IOM-2 Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10 2003-02-04 SBCX-X PEB 3081 Overview 1 Overview The S/T Bus Interface Circuit Extended (SBCX-X) implements the four-wire S/T interface used to link voice/data ISDN terminals, network terminators and PBX trunk lines to a central office. It is based on the SBCX PEB 2081, and provides enhanced features and functionality. The SBCX-X provides the electrical and functional link between the analog S/T interface (compliant to the ITU recommendation I.430) and the IOM-2 interface. It provides an S/T interface operating in TE, LT-T, LT-S, NT and intelligent NT modes, a serial control interface (SCI) for host programming, three general purpose I/O pins and one LED output which is capable to indicate the activation status of the S-interface automatically or can be programmed by the host. The SBCX-X is produced in advanced CMOS technology. Table 1 Comparison of the SBCX-X with the Previous Version SBCX SBCX-X PEB 3081 SBCX PEB 2081 Operating modes TE, LT-T, LT-S, NT, Int. NT TE, LT-T, LT-S, NT Supply voltage 3.3 V ± 5% 5 V ± 5% Technology CMOS CMOS Package P-MQFP-44 / P-TQFP-48 P-LCC-28 / P-DIP-28 Transceiver Transformer ratio for the transmitter receiver 1:1 1:1 2:1 2:1 Test Functions - Analog loop (LP_A - bit EXLP - bit, ARL) - Analog loop (ARL) Microcontroller Interface Serial interface (SCI) Not provided Host programming SCI or MON channel (MONITOR slave mode) MON channel (MONITOR slave mode) Command structure of the register access Header/address/data Address/data Crystal 7.68 MHz 7.68 MHz Buffered 7.68 MHz output Provided Not provided Data Sheet 11 2003-02-04 SBCX-X PEB 3081 Overview Table 1 Comparison of the SBCX-X with the Previous Version SBCX (cont’d) SBCX-X PEB 3081 SBCX PEB 2081 Controller data access to IOM-2 timeslots All timeslots; Not provided various possibilities of data access Data control and manipulation Various possibilities of data Shifting B-channel to control and data channel 0 and direction manipulation control (enable/disable, shifting, looping, switching) Auxiliary Interface AUX0-2 (general purpose I/Os) MAI0-7 (general purpose I/Os and several mode dependent functions) IOM channel select (LT modes) Channel select pins multiplexed on AUX0-2 X0-2 LED pin ACL (host controlled or automatic indication of layer 1 activated state) Not provided Output pin for D-channel active indication Provided Not provided Control input pin for D-channel inhibit Provided Not provided Stop/Go bit output pin Provided Provided IOM-2 IOM-2 Interface Double clock (DCL), Double clock (DCL), bit clock (BCL), bit clock (BCL) serial data strobe 1 (SDS1) serial data strobe 2 (SDS2) Monitor channel programming Provided (MON0, 1, 2, ..., 7) Provided (MON0 or 1) C/I channels CI0 (4 bit), CI1 (4/6 bit) CI0 (4 bit), CI1 (6 bit) Data Sheet 12 2003-02-04 SBCX-X PEB 3081 Overview Table 1 Comparison of the SBCX-X with the Previous Version SBCX (cont’d) SBCX-X PEB 3081 SBCX PEB 2081 Layer 1 state machine With changes for correspondence with the actual ITU specification Layer 1 state machine in software Possible Not possible Reset Signals RES input signal RSTO output signal RST input signal Reset Sources RES Input Watchdog C/I Code Change EAW Pin Software Reset RST Input C/I Code Change Interrupt Output Signals INT Not provided low active (open drain) by default, reprogrammable to high active (push-pull) Pin SCLK 1.536 MHz Data Sheet 512 kHz 13 2003-02-04 S/T Bus Interface Circuit Extended SBCX-X PEB 3081 Version 1.4 1.1 Features • Full duplex 2B + D S/T interface transceiver according to ITU-T I.430 • Successor of SBCX PEB 2081 in 3.3 V technology • Conversion of the frame structure between the S/T-interface and IOM-2 P-MQFP-44-2 • IOM-2 interface supporting TE, LT-T, LT-S, NT and intelligent NT modes P-MQFP-44 • Single and double clocks on IOM-2 • Two serial data strobe signals • Serial control interface (SCI) • Microcontroller access to all IOM-2 timeslots • Monitor channel handler (master/slave) • IOM-2 MONITOR and C/I-channel protocol to control peripheral devices • Receive timing recovery • D-channel access control • Activation and deactivation procedures with automatic P-TQFP-48 activation from power down state • Access to S and Q bits of S/T-interface • Adaptively switched receive thresholds • 3 general purpose I/O pins multiplexed with channel select pins • Three pins for D-channel active indication, Stop/Go bit output and E-bit control on S • One programmable timer • Watchdog timer • Software Reset • One LED pin automatically indicating layer 1 activated state • Test loops • Sophisticated power management for restricted power mode Type Package PEB 3081 H P-MQFP-44 PEB 3081 F P-TQFP-48 Data Sheet 14 2003-02-04 SBCX-X PEB 3081 Overview • Power supply 3.3 V • 3.3 V output drivers, inputs are 5 V safe • Advanced CMOS technology 1.2 Logic Symbol The logic symbol gives an overview of the SBCX-X functions. It must be noted that not all functions are available simultaneously, but depend on the selected mode. Pins which are marked with a “ * “ are multiplexed and not available in all modes. IOM-2 Interface +3.3V 0V 0V 2 DU DD FSC DCL BCL/ SDS1/2 VDD VSS TP VDDA VSSA SCLK SCL C768 SDR Host Interface (SCI) SDX XTAL2 CS XTAL1 INT 7.68 MHz output 7.68 MHz ± 100ppm SR1 RES SR2 RSTO S Interface SX1 SX2 D-channel Active Indication DCA D-channel Inhibit DCI S/G Bit Output SGO MODE0 Mode Setting MODE1 / EAW AUX0...2 * CH0...2 * General purpose I/O IOM channel select ACL LED Output 3081_17 Auxiliary Interface Figure 1 Data Sheet Logic Symbol of the SBCX-X 15 2003-02-04 SBCX-X PEB 3081 Overview 1.3 Typical Applications The SBCX-X is designed for the user area of the ISDN basic access. By programming the corresponding operating mode it may be used at both ends of these interfaces. Figure 2 illustrates the general application fields of the SBCX-X: • • • • ISDN terminals (TE mode) ISDN network termination (NT) for a link between the S/T interface and the U interface ISDN subscriber line termination (LT-S) ISDN trunk line termination (LT-T), i.e. PBX connection to central office S TE(1) LT-S TE(8) Network Terminator (NT) S U TE (1) NT 1 NT T TE(8) NT 2 LT-S NT 1 LT-T NT ITS04492 = SBCX-X Figure 2 Data Sheet Applications of the SBCX-X 16 2003-02-04 SBCX-X PEB 3081 Pin Configuration 2 Pin Configuration VDD VSS XTAL1 VSS XTAL2 SX2 SX1 VDDA VSSA SR2 SR1 P-MQFP-44 33 32 31 30 29 28 27 26 25 24 23 BCL / SCLK DU 34 35 22 21 DD FSC 36 20 37 38 19 18 SDS1 17 C768 SGO 13 44 12 VSS Data Sheet SDX 9 10 11 SCL SDR 2 3 4 5 6 7 8 INT n.c. 1 Figure 3 SDS2 43 VDD MODE1 / EAW ACL 16 15 14 AUX1 AUX0 DCI DCA VDD VSS MODE0 40 41 42 RES RSTO VSS VDD SBCX-X PEB 3081 39 CS TP DCL VSS AUX2 3081_02.vsd Pin Configuration of the SBCX-X (P-MQFP-44) 17 2003-02-04 SBCX-X PEB 3081 Pin Configuration VSS VDD XTAL2 XTAL1 n.c. VSS SX2 SX1 VDDA VSSA SR2 SR1 P-TQFP-48 36 35 34 33 32 31 30 29 28 27 26 25 AUX1 AUX0 40 21 SDS1 20 19 18 SDS2 17 16 DCI DCA 46 15 47 48 14 13 n.c. VDD 41 42 43 SBCX-X PEB 3081 2 3 4 5 6 7 8 INT n.c. 1 Figure 4 Data Sheet C768 SGO VSS 9 10 11 12 SDX 44 45 SCL SDR MODE1 / EAW ACL n.c. 23 22 n.c. MODE0 38 39 VDD VSS VDD AUX2 VSS DCL VSS 24 RES RSTO DD FSC 37 CS TP BCL / SCLK DU 3081_01.vsd Pin Configuration of the SBCX-X (P-TQFP-48) 18 2003-02-04 SBCX-X PEB 3081 Pin Configuration Table 2 SBCX-X Pin Definitions and Functions Pin No. MQFP44 Symbol Input (I) Function Output (O) Open Drain (OD) TQFP48 Host Interface 9 10 SCL I SCL - Serial Clock Clock signal of the SCI interface if a serial interface is selected. 10 11 SDR I SDR - Serial Data Receive Receive data line of the SCI interface if a serial interface is selected. 11 12 SDX OD SDX - Serial Data Transmit Transmit data line of the SCI interface if a serial interface is selected. 3 3 CS I Chip Select A low level indicates a microcontroller access to the SBCX-X. 1 1 INT O (OD) Interrupt Request INT becomes active (low) if the SBCX-X requests an interrupt (open drain characteristic). The polarity can be reprogrammed to high active with push-pull characteristic. 5 5 RES I Reset A LOW on this input forces the SBCX-X into a reset state. IOM-2 Interface 37 40 FSC I/O Frame Sync 8-kHz frame synchronization signal. 38 41 DCL I/O Data Clock IOM-2 interface clock signal (double clock, e.g. 1.536 MHz in TE mode). Data Sheet 19 2003-02-04 SBCX-X PEB 3081 Pin Configuration Table 2 SBCX-X Pin Definitions and Functions (cont’d) Pin No. Symbol Input (I) Function Output (O) Open Drain (OD) MQFP44 TQFP48 34 37 BCL/ SCLK O Bit Clock/S-Clock TE-Mode: Bit clock output, identical to IOM-2 data rate (DCL/2). LT-T Mode: 1.536 MHz output synchronous to S-interface. NT / LT-S Mode: Bit clock output derived from the DCL input clock divided by 2. 36 39 DD I/O (OD) Data Downstream IOM-2 data signal in downstream direction. 35 38 DU I/O (OD) Data Upstream IOM-2 data signal in upstream direction. 19 21 SDS1 O Serial Data Strobe 1 Programmable strobe signal for time slot and/or D-channel indication on IOM-2. 18 20 SDS2 O Serial Data Strobe 2 Programmable strobe signal for time slot and/or D-channel indication on IOM-2. Miscellaneous 28 29 31 32 SX1 SX2 O O S-Bus Transmitter Output (positive) S-Bus Transmitter Output (negative) 32 33 35 36 SR1 SR2 I I S-Bus Receiver Input S-Bus Receiver Input 25 27 XTAL1 I 26 28 XTAL2 O Crystal 1 Connection for a crystal or used as external clock input. 7.68 MHz clock or crystal required. Crystal 2 Connection for a crystal. Not connected if an external clock is supplied to XTAL1 Data Sheet 20 2003-02-04 SBCX-X PEB 3081 Pin Configuration Table 2 SBCX-X Pin Definitions and Functions (cont’d) Pin No. Symbol Input (I) Function Output (O) Open Drain (OD) MQFP44 TQFP48 20 21 22 22 23 24 AUX0 AUX1 AUX2 I/O (OD) I/O (OD) I/O (OD) TE-Mode: Auxiliary Port 0 - 2 (input/output) These pins are individually programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. LT-T/LT-S/NT Mode: CH0-2 - IOM-2 Channel Select (input) These pins select one of eight channels on the IOM-2 interface. 42 45 MODE0 I Mode 0 Select A LOW selects TE-mode and a HIGH selects LT-T / LT-S mode (see MODE1/ EAW). 43 46 MODE1 I EAW I The pin function depends on the setting of MODE0. If MODE0=1: Mode 1 Select A LOW selects LT-T mode and a HIGH selects LT-S mode. If MODE0=0: External Awake If a falling edge on this input is detected, the SBCX-X generates an interrupt and, if enabled, a reset pulse. 6 6 RSTO OD Reset Output Low active reset output, either from a watchdog timeout or programmed by the host. 17 19 C768 O Clock Output A 7.68 MHz clock is output to support other devices. This clock is not synchronous to the S interface. 14 16 DCA O DCA - D-Channel Active Indication This pin provides an output of the D-channel bits on the S-bus receive line. Data Sheet 21 2003-02-04 SBCX-X PEB 3081 Pin Configuration Table 2 SBCX-X Pin Definitions and Functions (cont’d) Pin No. Symbol Function Input (I) Output (O) Open Drain (OD) MQFP44 TQFP48 15 17 DCI I DCI - D-Channel Inhibit If this bit is set to ’1’ the E-bits are inverted, i.e. the D-channel is blocked (only in NT/LT-S mode). This pin has the same function as the D-channel inhibit bit (see TR_MODE.DCH_INH). 16 18 SGO O SGO - Stop/Go Bit Output A S/G bit output with programmable polarity and length (TR_CONF2 register) is provided. 44 47 ACL O Activation LED This pin can either function as a programmable output or it can automatically indicate the activated state of the S interface by a logic ’0’. An LED with pre-resistance may directly be connected to ACL. 4 4 TP I Test Pin Must be connected to VSS. 2 2, 9, 15, n.c. 30, 48 Not Connected Power Supply 8, 13, 23, 8, 14, 41 25, 44 VDD – Digital Power Supply Voltage (3.3 V ± 5 %) 31 VDDA – Analog Power Supply Voltage (3.3 V ± 5 %) 7, 12, 24, 7, 13, 27, 39, 26, 29, 40 42, 43 VSS – Digital Ground (0 V) 30 VSSA – Analog Ground (0 V) Data Sheet 34 33 22 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3 Description of Functional Blocks 3.1 General Functions and Device Architecture Figure 5 shows the architecture of the SBCX-X containing the following functions: • • • • • • • • • • • • • • • • • • • • S/T-interface transceiver supporting TE, LT-T, LT-S, NT and intelligent NT modes Serial Control Interface (SCI) IOM-2 interface for terminal, linecard and NT applications, with single/double clock Two serial data strobe signals IOM handler with controller data access registers (CDA) allows flexible access to IOM timeslots for reading/writing, looping and shifting data Synchronous transfer interrupts (STI) allow controlled access to IOM timeslots MONITOR channel handler on IOM-2 for master mode, slave mode or data exchange C/I-Channel handler D-channel access mechanism 3-pin auxiliary port for general purpose I/O pins or channel select pins LED connected to pin ACL indicates S-interface activation status automatically or can be controlled by the host Output for D-channel active indication (output of received D-bits on S) Stop/Go bit output with programmable polarity and length D-channel inhibit input pin to control inversion of E-bits on S to block other terminals Level detect circuit on the S interface reduces power consumption in power down mode Timer for periodic or single interrupts Clock and timing generation Digital PLL to synchronize the transceiver to the S/T interface Buffered 7.68 MHz oscillator clock output allows connection of further devices and saves another crystal on the system board Reset generation (watchdog timer) Data Sheet 23 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Peripheral Devices IOM-2 Interface IOM-2 Handler S Transceiver General Purpose I/Os Auxiliary Interface MONITOR Handler TIC C/I DPLL Serial Host Interface (SCI) Reset Interrupt generation OSC 3081_18 Host Figure 5 Data Sheet Functional Block Diagram of the SBCX-X 24 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.2 Microcontroller Interface The SBCX-X supports a serial micrcontroller interface. For applications where no controller is connected to the SBCX-X programming is done via the IOM-2 MONITOR channel from a master device. In such applications the SBCX-X operates in the IOM-2 slave mode (refer to the corresponding chapter of the IOM-2 MONITOR handler). This mode is suitable for control functions (e.g. programming registers of the S/T transceiver), but the bandwidth is not sufficient to transfer B- and D-channel data. The interface selection is done by pinstrapping of the chip select signal CS (see Table 3). The selection pins are evaluated when the reset input RES is active. For the pin levels stated in the table the following is defined: ’High’: dynamic pin; value must be ’High’ only during reset VSS: static pin; pin must statically be strapped to ’Low’ level Table 3 Host Interface Selection CS Interface Mode ’High’ Serial Control Interface (SCI) VSS IOM-2 MONITOR Channel (Slave Mode) The interfaces contain all circuitry necessary for the access to programmable registers. The mapping of all these registers can be found in Chapter 4. The microcontroller interface also provides an interrupt request at pin INT which is low active by default but can be reprogrammed to high active, a reset input pin RES and a reset output pin RSTO. The interrupt request pin INT becomes active if the SBCX-X requests an interrupt and this can occur at any time. Data Sheet 25 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.2.1 Serial Control Interface (SCI) The serial control interface (SCI) is compatible to the SPI interface of Motorola or Siemens C510 family of microcontrollers. The SCI consists of 4 lines: SCL, SDX, SDR and CS. Data is transferred via the lines SDR and SDX at the rate given by SCL. The falling edge of CS indicates the beginning of a serial access to the registers. The SBCX-X latches incoming data at the rising edge of SCL and shifts out at the falling edge of SCL. Each access must be terminated by a rising edge of CS. Data is transferred in groups of 8 bits with the MSB first. Figure 6 shows the timing of a one byte read/write access via the serial control interface. Write Access CS SCL Header SDR Address Data 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 '0' write SDX Read Access CS SCL Header SDR Address 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 '1' read Data 7 6 5 4 3 2 1 0 SDX 21150_19 Figure 6 Data Sheet Serial Control Interface Timing 26 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.2.2 Programming Sequences The basic structure of a read/write access to the SBCX-X registers via the serial control interface is shown in Figure 7. write sequence: write byte 2 0 header SDR 7 address 0 7 6 read sequence: byte 3 write data 0 7 0 read byte 2 header SDR 7 1 address 0 7 6 0 7 SDX Figure 7 byte 3 0 read data Serial Control Interface Timing A new programming sequence starts with the transfer of a header byte. The header byte specifies different programming sequences allowing a flexible and optimized access to the individual functional blocks of the SBCX-X. The possible sequences for access to the complete address range 00H-7FH are listed in Table 4 and described after that. Table 4 Header Byte Header Byte Code Sequence 40H/44H 48H/4CH Alternating Read/Write (non-interleaved) Adr-Data-Adr-Data 43H/47H 41H/45H 49H/4DH Sequence Type Alternating Read/Write (interleaved) Read-only/Write-only (constant address) Adr-Data-Data-Data Read and following Write-only (non-interleaved) Read and following Write-only (interleaved) Note: In order to access the address range 00H-7FH bit 2 of the header byte must be set to ’0’ (header bytes 40H, 48H, 43H, 41H, 49H), and for the addresses 80H-FFH bit 2 must be set to ’1’ (header bytes 44H, 4CH, 47H, 45H, 4DH). Data Sheet 27 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Header 40H: Non-interleaved A-D-A-D Sequences The non-interleaved A-D-A-D sequence gives direct read/write access to the complete address range and can have any length. In this mode SDX and SDR can be connected together allowing data transmission on one line. Example for a read/write access with header 40H: SDR header wradr wrdata rdadr SDX rdadr rddata wradr wrdata rdata Header 48H: Interleaved A-D-A-D Sequences The interleaved A-D-A-D sequence gives direct read/write access to the complete address range and can have any length. This mode allows a time optimized access to the registers by interleaving the data on SDX and SDR (SDR and SDX must not be connected together). Example for a read/write access with header 48H: SDR header wradr wrdata rdadr SDX rdadr wradr wrdata rddata rddata Header 43H: Read-/Write- only A-D-D-D Sequence (Constant Address) This mode can be used for a fast access to the HDLC FIFO data. Any address (rdadr, wradr) in the range 00H-1FH and 6AH/7AH gives access to the current FIFO location selected by an internal pointer which is automatically incremented with every data byte following the first address byte. The sequence can have any length and is terminated by the rising edge of CS. Example for a write access with header 43H: SDR header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) SDX Example for a read access with header 43H: SDR header rdadr SDX rddata rddata rddata rddata rddata rddata rddata (rdadr) Data Sheet (rdadr) (rdadr) 28 (rdadr) (rdadr) (rdadr) (rdadr) 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Header 41H: Non-interleaved A-D-D-D Sequence This sequence allows in front of the A-D-D-D write access a non-interleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of CS. Example for a read/write access with header 41H: SDR header rdadr wradr wrdata wrdata wrdata rdadr (wradr) SDX rddata (wradr) (wradr) rddata Header 49H: Interleaved A-D-D-D Sequence This sequence allows in front of the A-D-D-D write access an interleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of the CS line. Example for a read/write access with header 49H: SDR header rdadr rdadr wradr wrdata wrdata wrdata (wradr) SDX 3.2.3 (wradr) (wradr) rddata rddata Interrupt Structure Special events in the device are indicated by means of a single interrupt output, which requests the host to read status information from the device or transfer data from/to the device. Since only one interrupt request pin (INT) is provided, the cause of an interrupt must be determined by the host reading the interrupt status registers of the device. The structure of the interrupt status registers is shown in Figure 8. Data Sheet 29 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks MASK ISTA ST ST CIC CIC AUX AUX TRAN TRAN MOS MOS MSTI STI STOV21 STOV21 ASTI STOV20 STOV20 STOV11 STOV11 STOV10 STOV10 STI21 STI21 ACK21 STI20 STI20 ACK20 STI11 STI11 ACK11 STI10 STI10 ACK10 CIR0 CIC0 CI1E CIC1 EAW EAW LD WOV WOV RIC RIC SQC SQC TIN AUXM TIN AUXI LD SQW MASKTR Interrupt CIX1 MRE SQW ISTATR MDR MER Figure 8 MIE MDA MOCR MAB MOSR 3081_16.vsd Interrupt Status and Mask Registers All five interrupt bits in the ISTA register point at interrupt sources in the Monitor handler (MOS), C/I handler (CIC), the transceiver (TRAN), the synchronous transfer (ST) and the auxiliary interrupts (AUXI). All these interrupt sources are described in the corresponding chapters. After the device has requested an interrupt activating the interrupt pin (INT), the host must read first the device interrupt status register (ISTA) in the associated interrupt service routine. The interrupt pin of the device remains active until all interrupt sources are cleared by reading the corresponding interrupt register. Therefore it is possible that the interrupt pin is still active when the interrupt service routine is finished. Each interrupt indication of the interrupt status registers can selectively be masked by setting the respective bit in the MASK register. For some interrupt controllers or hosts it might be necessary to generate a new edge on the interrupt line to recognize pending interrupts. This can be done by masking all interrupts at the end of the interrupt service routine (writing FFH into the MASK register) and write back the old mask to the MASK register. Data Sheet 30 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.2.4 Reset Generation Figure 9 shows the organization of the reset generation of the device. . C/I Code Change (Exchange Awake) RSS1 125µs £ t £ 250µs ³1 EAW (Subscriber Awake) 125µs £ t £ 250µs '0' '1x' '1' '01' '00' ³1 Software Reset Register (SRES) ' 01 ' RSS2,1 125µs £ t £ 250µs Watchdog (reserved) RSS2,1 ³1 Pin RSTO 125µs £ t £ 250µs Transceiver, C/I (22H-3FH) Reset IOM-2 (40H-5BH) Functional MON-channel (5CH-5FH) Block General Config (60H-6FH) Reset MODE1 Register Pin RES Internal Reset of all Registers 3081_21 Figure 9 Reset Generation Reset Source Selection The internal reset sources C/I code change, EAW and Watchdog can be output at the low active reset pin RSTO. The selection of these reset sources can be done with the RSS2,1 bits in the MODE1 register according Table 5. The setting RSS2,1 = ’01’ is reserved for further use. In this case no reset except software reset (SRES.RSTO) is output on RSTO. The internal reset sources set the MODE1 register to its reset value. Data Sheet 31 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Table 5 Reset Source Selection RSS2 Bit 1 RSS1 Bit 0 C/I Code Change EAW Watchdog Timer 0 0 -- -- -- 0 1 1 0 x x -- 1 1 -- -- x reserved • C/I Code Change (Exchange Awake) A change in the downstream C/I channel (C/I0) generates an external reset pulse of 125 µs £ t £ 250 µs. • EAW (Subscriber Awake) A low level on the EAW input starts the oscillator from the power down state and generates a reset pulse of 125 µs £ t £ 250 µs. • Watchdog Timer After the selection of the watchdog timer (RSS = ’11’) an internal timer is reset and started. During every time period of 128 ms the microcontroller has to program the WTC1- and WTC2 bits in the following sequence to reset and restart the watchdog timer: 1. 2. WTC1 WTC2 1 0 0 1 If not, the timer expires and a WOV-interrupt (ISTA Register) together with a reset pulse of 125 µs is generated. Deactivation of the watchdog timer is only possible with a hardware reset. External Reset Input At the RES input an external reset can be applied forcing the device in the reset state. This external reset signal is additionally fed to the RSTO output. The length of the reset signal is specified in Chapter 5.8. After an external reset from the RES pin all registers of the device are set to its reset values (see register description in Chapter 4). Software Reset Register (SRES) Every main functional block of the device can be reset separately by software setting the corresponding bit in the SRES register. A reset to external devices can also be controlled in this way. The reset state is activated by setting the corresponding bit to ’1’ and onchip Data Sheet 32 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks logic resets this bit again automatically after 4 BCL clock cycles. The address range of the registers which will be reset at each SRES bit is listed in Figure 9. 3.2.5 Timer Modes The SBCX-X provides one timer which can be used for various purposes. It provides two modes (Table 6), a count down timer interrupt, i.e. an interrupt is generated only once after expiration of the selected period, and a periodic timer interrupt, which means an interrupt is generated continuously after every expiration of that period. Table 6 Address 65H SBCX-X Timer Register TIMR Modes Period Periodic 1 ... 63 ms Count Down 1 ... 63 ms When the programmed period has expired an interrupt is generated and indicated in the auxiliary interrupt status ISTA.AUX. The source of the interrupt can be read from AUXI.TIN and masked in AUXM. MASK ST CIC AUX TRAN MOS ISTA AUXM EAW WOV TIN ST CIC AUX TRAN MOS AUXI EAW WOV TIN Interrupt Figure 10 Data Sheet Timer Interrupt Status Registers 33 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks The host starts and stops the timer in TIMR.CNT (Figure 11). If TIMR.TMD=0 the timer is operating in count down mode, for TIMR.TMD=1 a periodic interrupt AUXI.TIN is generated. The timer length (for count down timer) or the timer period (for periodic timer), respectively, can be configured to a value between 1 - 63 ms (TIMR.CNT). Timer Mode 0 : Count Down Timer 1 : Periodic Timer Timer Count 0 : Timer off 1 ... 63 : 1 ... 63 ms 7 TIMR Figure 11 Data Sheet 6 5 TMD 0 4 3 2 1 0 65H CNT 3081_14 Timer Register 34 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.2.6 Activation Indication via Pin ACL The activated state of the S-interface is directly indicated via pin ACL (Activation LED). An LED with pre-resistance may directly be connected to this pin and a low level is driven on ACL as soon as the layer 1 state machine reaches the activated state (see Figure 12). Figure 12 ACL Indication of Activated Layer 1 on TE Side By default (ACFG2.ACL=0) the state of layer 1 is indicated at pin ACL. If the automatic indication of the activated layer 1 is not required, the state on pin ACL can also be controlled by the host (see Figure 13). If ACFG2.ACL=1 the LED on pin ACL can be switched on (ACFG2.LED=1) and off (ACFG2.LED=0) by the host. +3.3V '1' ACL ACFG2:LED 0 : off 1 : on '0' Layer 1 S Interface ACFG2:ACL 3086_15 Figure 13 Data Sheet ACL Configuration 35 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3 S/T-Interface The layer-1 functions for the S/T interface of the SBCX-X are: – line transceiver functions for the S/T interface according to the electrical specifications of ITU-T I.430; – conversion of the frame structure between IOM-2 and S/T interface; – conversion from/to binary to/from pseudo-ternary code; – level detection; – receive timing recovery for point-to-point, passive bus and extended passive bus configuration; – S/T timing generation using IOM-2 timing synchronous to system, or vice versa; – D-channel access control and priority handling; – D-channel echo bit generation by handling of the global echo bit; – activation/deactivation procedures, triggered by primitives received over the IOM-2 interface or by INFOs received from the line; – execution of test loops. The wiring configurations in user premises, in which the SBCX-X can be used, are illustrated in Figure 14. Data Sheet 36 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks £ 1000 m 1) SBCX-X TR TR TE SBCX-X LT-S £ 1000 m 1) SBCX-X TR TR SBCX-X LT-T Point-to-Point Configurations NT 1) The maximum line attenuation tolerated by the SBCX-X is 7 dB at 96 kHz. £ 100 m TR TR £ 10 m SBCX-X .... TE1 SBCX-X Short Passive Bus NT / LT-S SBCX-X TE8 £ 500 m £ 25 m TR TR £ 10 m SBCX-X TE1 Figure 14 Data Sheet .... SBCX-X Extended Passive Bus NT / LT-S TR: Terminating Resistor SBCX-X TE8 3081_20 Wiring Configurations in User Premises 37 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.1 S/T-Interface Coding Transmission over the S/T-interface is performed at a rate of 192 kbit/s. 144 kbit/s are used for user data (B1+B2+D), 48 kbit/s are used for framing and maintenance information. Line Coding The following figure illustrates the line code. A binary ONE is represented by no line signal. Binary ZEROs are coded with alternating positive and negative pulses with two exceptions: For the required frame structure a code violation is indicated by two consecutive pulses of the same polarity. These two pulses can be adjacent or separated by binary ONEs. In bus configurations a binary ZERO always overwrites a binary ONE. 0 1 1 code violation Figure 15 S/T-Interface Line Code Frame Structure Each S/T frame consists of 48 bits at a nominal bit rate of 192 kbit/s. For user data (B1+B2+D) the frame structure applies to a data rate of 144 kbit/s (see Figure 16). In the direction TE ® NT the frame is transmitted with a two bit offset. For details on the framing rules please refer to ITU I.430 section 6.3. The following figure illustrates the standard frame structure for both directions (NT ® TE and TE ® NT) with all framing and maintenance bits. Data Sheet 38 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Figure 16 Frame Structure at Reference Points S and T (ITU I.430) – F Framing Bit F = (0b) ® identifies new frame (always positive pulse, always code violation) – L. D.C. Balancing Bit L. = (0b) ® number of binary ZEROs sent after the last L. bit was odd – D D-Channel Data Bit Signaling data specified by user – E D-Channel Echo Bit E = D ® received E-bit is equal to transmitted D-bit – FA Auxiliary Framing Bit See section 6.3 in ITU I.430 – N N = FA – B1 B1-Channel Data Bit User data – B2 B2-Channel Data Bit User data – A Activation Bit A = (0b) ® INFO 2 transmitted A = (1b) ® INFO 4 transmitted – S S-Channel Data Bit S1 channel data (see note below) – M Multiframing Bit M = (1b) ® Start of new multiframe Note: The ITU I.430 standard specifies S1 - S5 for optional use. Data Sheet 39 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.2 S/T-Interface Multiframing According to ITU recommendation I.430 a multiframe provides extra layer 1 capacity in the TE-to-NT direction by using an extra channel between the TE and NT (Q-channel). The Q bits are defined to be the bits in the FA bit position. In the NT-to-TE direction the S-channel bits are used for information transmission. One S channel (S1) out of five possible S-channels can be accessed by the SBCX-X. In the NT-to-TE direction the S-channel bits are used for information transmission. The S and Q channels are accessed via the µC interface or the IOM-2 MONITOR channel, respectively, by reading/writing the SQR or SQX bits in the S/Q channel registers (SQRRx, SQXRx). Table 7 shows the S and Q bit positions within the multiframe. Table 7 S/Q-Bit Position Identification and Multiframe Structure Frame Number NT-to-TE NT-to-TE FA Bit Position M Bit NT-to-TE S Bit TE-to-NT FA Bit Position 1 2 3 4 5 ONE ZERO ZERO ZERO ZERO ONE ZERO ZERO ZERO ZERO S11 S21 S31 S41 S51 Q1 ZERO ZERO ZERO ZERO 6 7 8 9 10 ONE ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO S12 S22 S32 S42 S52 Q2 ZERO ZERO ZERO ZERO 11 12 13 14 15 ONE ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO S13 S23 S33 S43 S53 Q3 ZERO ZERO ZERO ZERO 16 17 18 19 20 ONE ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO S14 S24 S34 S44 S54 Q4 ZERO ZERO ZERO ZERO 1 2 ONE ZERO ONE ZERO S11 S21 Q1 ZERO Data Sheet 40 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks TE Mode After multiframe synchronization has been established, the Q data will be inserted at the upstream (TE ® NT) FA bit position in each 5th S/T frame (see Table 7). When synchronization is not achieved or lost, each received FA bit is mirrored to the next transmitted FA bit. Multiframe synchronization is achieved after two complete multiframes have been detected with reference to FA/N bit and M bit positions. Multiframe synchronization is lost if bit errors in FA/N bit or M bit positions have been detected in two consecutive multiframes. The synchronization state is indicated by the MSYN bit in the S/Q-channel receive register (SQRR1). The multiframe synchronization can be enabled or disabled by programming the MFEN bit in the S/Q-channel transmit register (SQXR1). NT Mode The transceiver in NT mode starts multiframing if SQXR1.MFEN is set. After multiframe synchronization has been established in the TE, the Q data will be inserted at the upstream (TE ® NT) FA bit position by the TE in each 5th S/T frame, the S data will be inserted at the downstream (NT ® TE) S bit position in each S/T frame (see Table 7). Interrupt Handling for Multiframing To trigger the microcontroller for a multiframe access an interrupt can be generated once per multiframe (SQW) or if the received S-channels (TE) or Q-channel (NT) have changed (SQC). In both cases the microcontroller has access to the multiframe within the duration of one multiframe (5 ms). Data Sheet 41 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.3 Data Transfer and Delay between IOM-2 and S/T TE mode In the state F7 (Activated) or if the internal layer-1 statemachine is disabled and XINF of register TR_CMD is programmed to ’011’ the B1, B2, D and E bits are transferred transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted to the IOM-2 interface. To transfer data transparently to the S/T interface any activation request C/I command (AR8, AR10 or ARL) is additionally necessary or if the internal layer-1 statemachine is disabled, bit TDDIS of register TR_CMD has additionally to be programmed to ’0’. Figure 17 shows the data delay between the IOM-2 and the S/T interface and vice versa. For the D channel the delay from the IOM-2 to the S/T interface is only valid if S/G evaluation is disabled (TR_MODE2.DIM0=0). If S/G evaluation is enabled (TR_MODE2.DIM2-0=0x1) the delay depends on the selected priority and the relation between the echo bits on S and the D channel bits on the IOM-2, e.g. for priority 8 the timing relation between the 8th D-bit on S bus and the D-channel on IOM-2. E NT -> TE F D E B1 B2 D TE -> NT F B1 B2 D E D E B1 B2 D D B1 D E F E B1 D B2 D F B2 D B1 B2 D E D E B1 B2 D D B1 D D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D Figure 17 Data Sheet E B1 B2 D E B1 B2 D E B1 B2 D E line_iom_s.vsd Data Delay between IOM-2 and S/T Interface (TE mode only) 42 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks E NT -> TE F D E B1 B2 D TE -> NT F B1 B2 D E D E B1 B2 D D B1 D E F E B1 D B2 D F B2 D B1 D E D E B1 B2 D D B2 B1 D D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D E B1 B2 D E B1 B2 D E B1 B2 D Mapping of B-Channel Timeslots Mapping of a 4-bit group of D-bits on S and IOM depends on prehistory (e.g. priority control): 1. Possibility 2. Possibility Figure 18 E line_iom_s_dch.vsd Data Delay between IOM-2 and S/T Interface with S/G Bit Evaluation (TE mode only) LT-T mode In this mode the frame relation between S/T interface and IOM-2 is flexible. LT-S/NT mode In the state F7 (Activated) or if the internal layer-1 statemachine is disabled and XINF of register TR_CMD is programmed to ’011’ the B1, B2 and D bits are transferred transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted to the IOM-2 interface. Note: In intelligent NT the D-channel access can be blocked by the IOM-2 D-channel handler. Data Sheet 43 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks E NT -> TE F D E B1 D B2 D F TE -> NT B1 E D E B1 B2 D D B2 B1 D E F D B1 D B2 D B2 E D F B1 E D E B1 B2 D D B2 B1 D D B2 FSC DD B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D DU Figure 19 Data Delay between IOM-2 and S/T Interface with 8 IOM Channels (LT-S/NT mode only) E NT -> TE F D E B1 D B2 D F TE -> NT line_iom_s4nt.vsd B1 B2 E F B1 E B1 B2 D D B1 D TE -> NT (42µs) D E F D B2 F D B2 D B1 B2 D D D B1 E B1 D D B2 D B2 F B1 E D E B1 B2 D D B1 D B2 D B2 D D B1 D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D Figure 20 Data Sheet E B1 B2 D E B1 B2 D E B1 B2 D E line_iom_s4nt_dly.vsd Data Delay between IOM-2 and S/T Interface with 3 IOM Channels and Maximum Receive Delay (LT-S/NT mode only) 44 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.4 Transmitter Characteristics The full-bauded pseudo-ternary pulse shaping is achieved with the integrated transmitter which is realized as a symmetrical current limited voltage source (VSX1/SX2 = +/-1.05 V; Imax = 26 mA). The equivalent circuit of the transmitter is shown in Figure 21. The nominal pulse amplitude on the S-interface of 750 mV (zero-peak) is adjusted with external resistors (see Chapter 3.3.6.1). VCM+0.525V VCM VCM-0.525V '+0' '1' '-0' + SX1 V=1 - Level VCM-0.525V VCM VCM+0.525V Figure 21 Data Sheet '+0' '1' VCM TR_CONF2.DIS_TX '+0' '1' '-0' - SX2 V=1 + '-0' 21150_28 Equivalent Internal Circuit of the Transmitter Stage 45 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.5 Receiver Characteristics The receiver consists of a differential input stage, a peak detector and a set of comparators. Additional noise immunity is achieved by digital oversampling after the comparators. A simplified equivalent circuit of the receiver is shown in Figure 22. 100 kW 10 kW SR1 40 kW VrefLD Level detected Vrefmin 10 kW SR2 40 kW VCM Vref+ Positive detected Peak Detector Vref- Negative detected reccirc Figure 22 Equivalent Internal Circuit of the Receiver Stage The input stage works together with external 10 kW resistors to match the input voltage to the internal thresholds. The data detection threshold Vref is continuously adapted between a maximal (Vrefmax) and a minimal (Vrefmin) reference level related to the line level. The peak detector requires maximum 2 ms to reach the peak value while storing the peak level for at least 250 ms (RC > 1 ms). The additional level detector for power up/down control works with a fixed threshold VrefLD. The level detector monitors the line input signals to detect whether an INFO is present. When closing an analog loop it is therefore possible to indicate an incoming signal during activated loop. Data Sheet 46 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.6 S/T Interface Circuitry For both, receive and transmit direction a 1:1 transformer is used to connect the SBCXX transceiver to the 4 wire S/T interface. Typical transformer characteristics can be found in the chapter on electrical characteristics. The connections of the line transformers is shown in Figure 23. 3.3 V 1:1 SX1 VDD Protection Circuit Transmit Pair SX2 10 µF 1:1 SR1 Protection Circuit VSS GND Receive Pair SR2 21150_05 Figure 23 Connection of Line Transformers and Power Supply to the SBCX-X For the transmit direction an external transformer is required to provide isolation and pulse shape according to the ITU-T recommendations. 3.3.6.1 External Protection Circuitry The ITU-T I.430 specification for both transmitter and receiver impedances in TEs results in a conflict with respect to external S-protection circuitry requirements: – To avoid destruction or malfunction of the S-device it is desirable to drain off even small overvoltages reliably. – To meet the 96 kHz impedance test specified for transmitters and receivers (for TEs only, ITU-T I.430 sections 8.5.1.2a and 8.6.1.1) the protection circuit must be dimensioned such that voltages below 1.2 V (ITU-T I.430 amplitude) x transformer ratio are not affected. This requirement results from the fact that this test is also to be performed with no supply voltage being connected to the TE. Therefore the second reference point for overvoltages VDD, is tied to GND. Then, if the amplitude of the 96 kHz test signal is greater than the combined forward voltages of the diodes, a current exceeding the specified one may pass the protection circuit. The following recommendations aim at achieving the highest possible device protection against overvoltages while still fulfilling the 96 kHz impedance tests. Data Sheet 47 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Protection Circuit for Transmitter SX1 1:1 R S Bus Vdd SX2 R 3081_23 Figure 24 External Circuitry for Transmitter Figure 24 illustrates the secondary protection circuit recommended for the transmitter. The external resistors (R = 5 .... 10 W) are required in order to adjust the output voltage to the pulse mask on the one hand and in order to meet the output impedance of minimum 20 W (transmission of a binary zero according to ITU-T I.430) on the other hand. Two mutually reversed diode paths protect the device against positive or negative overvoltages on both lines. An ideal protection circuit should limit the voltage at the SX pins from – 0.4 V to VDD + 0.4 V. With the circuit in Figure 24 the pin voltage range is increased from – 1.4 V to VDD + 0.7 V. The resulting forward voltage of 1.4 V will prevent the protection circuit from becoming active if the 96 kHz test signal is applied while no supply voltage is present. Protection Circuit for Receiver Figure 25 illustrates the external circuitry used in combination with a symmetrical receiver. Protection of symmetrical receivers is rather simple. 1:1 S Bus Note: up to 10 pF capacitors are optional for noise reduction Figure 25 Data Sheet External Circuitry for Symmetrical Receivers 48 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Between each receive line and the transformer a 10 kW resistor is used. This value is split into two resistors: one between transformer and protection diodes for current limiting during the 96 kHz test, and the second one between input pin and protection diodes to limit the maximum input current of the chip. With symmetrical receivers no difficulties regarding LCL measurements are observed; compensation networks thus are obsolete. In order to comply to the physical requirements of ITU-T recommendation I.430 and considering the national requirements concerning overvoltage protection and electromagnetic compatibility (EMC), the SBCX-X may need additional circuitry. 3.3.6.2 S-Transceiver Synchronization Synchronization problems can occur on a S-Bus that is not terminated properly. Therefore, it is recommended to change the resistor values in the receive path. The sum of both resistors is increased from 10 kW (1.8 + 8.2) to e.g. 34 kW (6.8 + 27) for either receiver line. This change is possible but not necessary for a S-Bus that is terminated properly. R1 R2 SR2 GND VDD 1:1 S Bus SR1 R1 R2 21150_33 Note: Capacitors (up to 10 pF) are optional for noise reduction. Figure 26 External Circuitry for Symmetrical Receivers Note: Lower or higher values than 34 kW may be used as well, however for values above 34 kW the additional delay must be compensated by setting TR_CONF2.PDS=1 (compensates 260 ns) so the allowed input phase delay is not violated. Data Sheet 49 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.3.7 S/T Interface Delay Compensation (TE/LT-T Mode) The S/T transmitter is shifted by two S/T bits minus 7 oscillator periods (plus analog delay plus delay of the external circuitry) with respect to the received frame. To compensate additional delay introduced into the receive and transmit path by the external circuit the delay of the transmit data can be reduced by another two oscillator periods (2 x 130 ns). Therefore PDS of the TR_CONF2 register must be programmed to ’1’. This delay compensation might be necessary in order to comply with the "total phase deviation input to output" requirement of ITU-T recommendation I.430 which specifies a phase deviation in the range of – 7% to + 15% of a bit period. 3.3.8 Level Detection Power Down If MODE1.CFS is set to ’0’, the clocks are also provided in power down state, whereas if CFS is set to ’1’ only the analog level detector is active in power down state. All clocks, including the IOM-2 interface, are stopped (DD, DU are ’high’, DCL and BCL are ’low’). An activation initiated from the exchange side will have the consequence that a clock signal is provided automatically if TR_CONF0.LDD is set to ’0’. If TR_CONF0.LDD is set to ’1’ the microcontroller has to take care of an interrupt caused by the level detect circuit (ISTATR.LD) From the terminal side an activation must be started by setting and resetting the SPU-bit in the IOM_CR register and writing TIM to the CIX0 register or by resetting MODE1.CFS=0. 3.3.9 Transceiver Enable/Disable The layer-1 part of the SBCX-X can be enabled/disabled by configuration (see Figure 27) with the two bits TR_CONF0.DIS_TR and TR_CONF2.DIS_TX . By default all layer-1 functions with the exception of the transmitter buffer is enabled (DIS_TR = ’0’, DIS_TX = ’1’). With several terminals connected to the S/T interface, another terminal may keep the interface activated although the SBCX-X does not establish a connection. The receiver will monitor for incoming calls in this configuration. If the transceiver is disabled (DIS_TR = ’1’) all layer-1 functions are disabled including the level detection circuit of the receiver. In this case the power consumption of the Layer-1 is reduced to a minimum. The DCL and FSC pins become input. Data Sheet 50 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks TR_CONF0.DIS_TR TR_CONF2.DIS_TX ’1’ ’0’ Figure 27 3.3.10 Disabling of S/T Transmitter Test Functions The SBCX-X provides test and diagnostic functions for the S/T interface: Note: For more details please refer to the application note “Test Function of new STransceiver family” – The internal local loop (internal Loop A) is activated by a C/I command ARL or by setting the bit LP_A (Loop Analog) in the TR_CMD register if the layer-1 statemachine is disabled. The transmit data of the transmitter is looped back internally to the receiver. The data of the IOM-2 input B- and D-channels are looped back to the output B- and Dchannels. The S/T interface level detector is enabled, i.e. if a level is detected this will be reported by the Resynchronization Indication (RSY) but the loop function is not affected. Depending on the DIS_TX bit in the TR_CONF2 register the internal local loop can be transparent or non transparent to the S/T line. – The external local loop (external Loop A) is activated in the same way as the internal local loop described above. Additionally the EXLP bit in the TR_CONF0 register has to be programmed and the loop has to be closed externally as described in Figure 28. The S/T interface level detector is disabled. This allows complete system diagnostics. – In remote line loop (RLP) received data is looped back to the S/T interface. The Dchannel information received from the line card is transparently forwarded to the output IOM-2 D-channel. The output B-channel information on IOM-2 is fixed to ‘FF’H while this test loop is active. The remote loop is programmable in TR_CONF2.RLP. Data Sheet 51 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks SX1 100 W SX2 SCOUT-S(X) SR1 100 W SR2 Figure 28 External Loop at the S/T-Interface – transmission of special test signals on the S/T interface according to the modified AMI code are initiated via a C/I command written in CIX0 register (see Chapter 3.5.4) Two kinds of test signals may be transmitted by the SBCX-X: – The single pulses are of alternating polarity. One pulse is transmitted in each frame resulting in a frequency of the fundamental mode of 2 kHz. The corresponding C/I command is SSP (Send Single Pulses). – The continuous pulses are of alternating polarity. 48 pulses are transmitted in each frame resulting in a frequency of the fundamental mode of 96 kHz. The corresponding C/I command is SCP (Send Continuous Pulses). Data Sheet 52 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.4 Clock Generation Figure 29 shows the clock system of the SBCX-X. The oscillator is used to generate a 7.68 MHz clock signal (fXTAL). In TE mode the DPLL generates the IOM-2 clocks FSC (8 kHz), DCL (1536 kHz) and BCL (768 kHz) synchronous to the received S/T frames. In LT modes these pins are input and in LT-T mode an 1536 kHz clock synchronous to S is output at SCLK which can be used for DCL input. The FSC signal is used to generate the pulse lengths of the different reset sources C/I Code, EAW pin and Watchdog (see Chapter 3.2.4). FSC (TE mode) XTAL f XTAL 7.68 MHz OSC DCL (TE mode) DPLL BCL (TE mode) SCLK (LT-T mode) SW Reset C/I EAW Watchdog Pin RSTO Reset Generation 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs 3081_06 Figure 29 Clock System of the SBCX-X Data Sheet 53 2003-02-04 Data Sheet 54 o general purpose I/O pins AUX0-2 o:768 kHz (BCL) BCL/SCLK DD o:1536 kHz DCL i o:8 kHz FSC DU *4) pin: MODE0=0 TE Clock Modes Selected via Table 8 CH0-2: strap pins for IOM channel select *2) o i o:1536 kHz (SCLK) *3) i:1536 kHz (from SCLK) or 4096 kHz (from ext. PLL) i:8 kHz pin:MODE1=0 MODE0=1 LT-T i CH0-2: strap pins for IOM channel select *2) CH0-2: strap pins for IOM channel select *2) o o:256 kHz or 768 kHz or 2048 kHz (derived from DCL/2) i:512 kHz or 1536 kHz or 4096 kHz i o o:256 kHz or 768 kHz or 2048 kHz (derived from DCL/2) i:512 kHz or 1536 kHz or 4096 kHz i:8 kHz bit:MODE2=0 MODE1=1 MODE0=0 pin:MODE1=1 MODE0=1 i:8 kHz NT LT-S general purpose I/O pins i o o:768 kHz (derived from DCL/2) i:1536 kHz i:8 kHz bit:MODE2=1 MODE1=1 MODE0=1 or MODE0=0 *1) Int. NT SBCX-X PEB 3081 Description of Functional Blocks 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Note: The IOM-2 interface is adaptive. This means in LT-S/NT and LT-T mode other frequencies for BCL and DCL are possible in the range of 512-4096 kHz (DCL) and 256-2048 kHz (BCL). For details please refer to the application note “Reconfigurable PBX”. Note: i = input; o = output; For all input clocks typical values are given although other clock frequencies may be used, too. 1) The modes TE, LT-T and LT-S can directly be selected by strapping the pins MODE1 and MODE0. The mode can be reprogrammed in TR_MODE.MODE2-0 where NT and intelligent NT can be selected additionally. In int. NT mode MODE0 selects between NT state machine (0) and LT-S state machine (1). 2) The number of IOM channels depends on the DCL clock, e.g. with DCL=1536 kHz 3 IOM channels and with DCL=4096 kHz 8 channels are available. 3) In LT-T mode the 1536 kHz output clock on SCLK is synchronous to the S interface and can be used as input for the DCL clock. 4) The direction input/output refers to the direction of the B- and D-channel data stream across the S-transceiver. Due to the capabilites of the IOM-2 handler the direction of some other timeslots may be different if this is programmed by the host (e.g. for data exchange between different devices connected to IOM-2). Data Sheet 55 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.4.1 Description of the Receive PLL (DPLL) The receive PLL performs phase tracking between the F/L transition of the receive signal and the recovered clock. Phase adjustment is done by adding or subtracting 0.5 or 1 XTAL period to or from a 1.536-MHz clock cycle. The 1.536-MHz clock is than used to generate any other clock synchronized to the line. During (re)synchronization an internal reset condition may effect the 1.536-MHz clock to have high or low times as short as 130 ns. After the S/T interface frame has achieved the synchronized state (after three consecutive valid pairs of code violations) the FSC output in TE mode is set to a specific phase relationship, thus causing once an irregular FSC timing. The phase relationships of the clocks are shown in Figure 30. 7.68 MHz F-bit 1536 kHz * * Synchronous to receive S/T. Duty Ratio 1:1 Normally 768 kHz ITD09664 FSC Figure 30 3.4.2 Phase Relationships of SBCX-X Clock Signals Jitter The timing extraction jitter of the SBCX-X conforms to ITU-T Recommendation I.430 (– 7% to + 7% of the S-interface bit period). Data Sheet 56 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.4.3 Oscillator Clock Output C768 The SBCX-X derives its system clocks from an external clock connected to XTAL1 (while XTAL2 is not connected) or from a 7.68 MHz crystal connected across XTAL1 and XTAL2. At pin C768 a buffered 7.68 MHz output clock is provided to drive further devices, which is suitable in multiline applications for example (see Figure 31). This clock is not synchronized to the S-interface. In power down mode the C768 output is disabled (low signal). 7.68 MHz XTAL1 XTAL2 C768 XTAL1 n.c. n.c. XTAL2 C768 XTAL1 n.c. n.c. XTAL2 C768 3086_12 Figure 31 Data Sheet Buffered Oscillator Clock Output 57 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5 Control of Layer-1 The layer-1 activation / deactivation can be controlled by an internal state machine via the IOM-2 C/I0 channel or by software via the microcontroller interface directly. In the default state the internal layer-1 state machine of the SBCX-X is used. By setting the L1SW bit in the TR_CONF0 register the internal state machine can be disabled and the layer-1 commands, which are normally generated by the internal state machine are written directly in the TR_CMD register or indications read from the TR_STA register respectively.The SBCX-X layer-1 control flow is shown in Figure 32. Figure 32 Layer-1 Control In the following sections the layer-1 control by the SBCX-X state machine will be described. For the description of the IOM-2 C/I0 channel see also Chapter 3.7.4. The layer-1 functions are controlled by commands issued via the CIX0 register. These commands, sent over the IOM-2 C/I channel 0 to layer-1, trigger certain procedures, such as activation/deactivation, switching of test loops and transmission of special pulse patterns. These procedures are governed by layer-1 state diagrams. Responses from layer 1 are obtained by reading the CIR0 register after a CIC interrupt (ISTA). The state diagrams of the SBCX-X are shown in Figure 34 and Figure 35. The activation/deactivation implemented by the SBCX-X agrees with the requirements set forth in ITU recommendations. State identifiers F1-F8 are in accordance with ITU I.430. Data Sheet 58 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks State machines are the key to understanding the transceiver part of the SBCX-X. They include all information relevant to the user and enable him to understand and predict the behaviour of the SBCX-X. The state diagram notation is given in Figure 33. The informations contained in the state diagrams are: – – – – – – state name (based on ITU I.430) S/T signal received (INFO) S/T signal transmitted (INFO) C/I code received C/I code transmitted transition criteria The coding of the C/I commands and indications are described in detail in Chapter 3.5.4. SBCX-X IPAC IPAC OUT IN IOM-2 Interface C /Ι Ind. Cmd. Unconditional Transition State S / T Interface INFO ix ir ITD09657 Figure 33 State Diagram Notation The following example illustrates the use of a state diagram with an extract of the TE state diagram. The state explained is “F3 deactivated”. The state may be entered: – from the unconditional states (ARL, RES, TM) – from state “F3 pending deactivation”, “F3 power up”, “F4 pending activation” or “F5 unsynchronized” after the C/I command “DI” has been received. The following informations are transmitted: – INFO 0 (no signal) is sent on the S/T-interface. – C/I message “DC” is issued on the IOM-2 interface. Data Sheet 59 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks The state may be left by either of the following methods: – Leave for the state “F3 power up” in case C/I = “TIM” code is received. – Leave for state “F4 pending activation” in case C/I = AR8 or AR10 is received. – Leave for the state “F6 synchronized” after INFO 2 has been recognized on the S/Tinterface. – Leave for the state “F7 activated” after INFO 4 has been recognized on the S/Tinterface. – Leave for any unconditional state if any unconditional C/I command is received. As can be seen from the transition criteria, combinations of multiple conditions are possible as well. A “*” stands for a logical AND combination. And a “+” indicates a logical OR combination. The sections following the state diagram contain detailed information on all states and signals used. 3.5.1 State Machine TE and LT-T Mode 3.5.1.1 State Transition Diagram (TE, LT-T) Figure 34 shows the state transition diagram of the SBCX-X state machine. Figure 35 shows this for the unconditional transitions (Reset, Loop, Test Mode i). Data Sheet 60 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks DC i4 DI F3 Deactivated i0 TIM i0 AR i2 DI PU AR2) AR F4 Pending Act. TIM i0 i1 DI RSY i0 i2 i4 X TIM F5 Unsynchronized DI i0 TIM F3 Power Up i0 i0 i4 PU X DI Uncond. State TIM ix i2 AR X X4) F6 Synchronized i0*TO1 i2 i3 ix i4 RSY i2 i4 X F8 Lost Framing i2 i0 i0 DI TIM i0*TO1 i2 DI*TO2 ix AI3) AR2) F7 Activated i3 TO1: TO2: i4 i0*TO1 i4 DR1) X F3 Pending Deact. i0 TIM*TO2 i0 16 ms 0.5 ms 1) DR for transition from F7 or F8 DR6 for transition from F6 AR stands for AR8 or AR10 3) AI stands for AI8 or AI10 4) X stands for commands initiating unconditional transitions (RES, ARL, SSP or SCP) 2) Figure 34 Data Sheet statem_te_s.vsd State Transition Diagram (TE, LT-T) 61 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks SSP SCP ARL TIM SSP TMA SCP TIM ARL ARL DI Test Mode i DI iti RST * Loop A Closed i3 TIM DI RES RES Reset i0 * * i3 i3 RES TIM DI AIL ARL RSY Any State Loop A Activated i3 * statem_te_aloop_s.vsd Figure 35 3.5.1.2 State Transition Diagram of Unconditional Transitions (TE, LT-T) States (TE, LT-T) F3 Pending Deactivation State after deactivation from the S/T interface by INFO 0. Note that no activation from the terminal side is possible starting from this state. A ’DI’ command has to be issued to enter the state ’Deactivated State’. F3 Deactivated State The S/T interface is deactivated and the clocks are deactivated 500 µs after entering this state and receiving INFO 0 if the CFS bit of the SBCX-X Configuration Register is set to “0“. Activation is possible from the S/T interface and from the IOM-2 interface. The bit TR_CMD.PD is set and the analog part is powered down. F3 Power Up The S/T interface is deactivated (INFO 0 on the line) and the clocks are running. F4 Pending Activation The SBCX-X transmits INFO 1 towards the network, waiting for INFO 2. Data Sheet 62 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks F5 Unsynchronized Any signal except INFO 2 or 4 detected on the S/T interface. F6 Synchronized The receiver has synchronized and detects INFO 2. INFO 3 is transmitted to synchronize the NT. F7 Activated The receiver has synchronized and detects INFO 4. All user channels are now conveyed transparently to the IOM-2 interface. To transfer user channels transparently to the S/T interface either the command AR8 or AR10 has to be issued and TR_STA.FSYN must be “1” (signal from remote side must be synchronous). F8 Lost Framing The receiver has lost synchronization in the states F6 or F7 respectively. Unconditional States Loop A Closed (internal or external) The SBCX-X loops back the transmitter to the receiver and activates by transmission of INFO 3. The receiver has not yet synchronized. For a non transparent internal loop the DIS_TX bit of register TR_CONF2 has to be set to ’1’. Loop A Activated (internal or external) The receiver has synchronized to INFO 3. Data may be sent. The indication “AIL” is output to indicate the activated state. If the loop is closed internally and the S/T line awake detector detects any signal on the S/T interface, this is indicated by “RSY”. Test Mode - SSP Single alternating pulses are transmitted to the S/T-interface resulting in a frequency of the fundamental mode of 2 kHz. Test Mode - SCP Continuous alternating pulses are transmitted to the S/T-interface resulting in a frequency of the fundamental mode of 96 kHz. Data Sheet 63 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.1.3 C/I Codes (TE, LT-T) Command Abbr. Code Remark Activation Request with priority class 8 AR8 Activation Request with priority class 10 AR10 1001 Activation requested by the SBCX-X, D-channel priority set to 10 (see note) Activation Request Loop ARL 1010 Activation requested for the internal or external Loop A (see note). For a non transparent internal loop bit DIS_TX of register TR_CONF2 has to be set to ’1’ additionally. Deactivation Indication DI 1111 Deactivation Indication Reset RES 0001 Reset of the layer-1 statemachine Timing TIM 0000 Layer-2 device requires clocks to be activated Test mode SSP SSP 0010 One AMI-coded pulse transmitted in each frame, resulting in a frequency of the fundamental mode of 2 kHz Test mode SCP SCP 0011 AMI-coded pulses transmitted continuously, resulting in a frequency of the fundamental mode of 96 kHz 1000 Activation requested by the SBCX-X, D-channel priority set to 8 (see note) Note: In the activated states (AI8, AI10 or AIL indication) the 2B+D channels are only transferred transparently to the S/T interface if one of the three “Activation Request” commands is permanently issued. Data Sheet 64 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Indication Abbr. Code Remark Deactivation Request DR 0000 Deactivation request via S/T-interface if left from F7/F8 Reset RES 0001 Reset acknowledge Test Mode Acknowledge TMA 0010 Acknowledge for both SSP and SCP Slip Detected SLD 0011 Resynchronization during level detect RSY 0100 Signal received, receiver not synchronous Deactivation Request from F6 DR6 0101 Deactivation Request from state F6 Power up PU 0111 IOM-2 interface clocking is provided Activation request AR 1000 INFO 2 received Activation request loop ARL 1010 Internal or external loop A closed Illegal Code Violation CVR 1011 Illegal code violation received. This function has to be enabled by setting the EN_ICV bit of register TR_CONF0. Activation indication loop AIL 1110 Internal or external loop A activated Activation indication with priority class 8 AI8 1100 INFO 4 received, D-channel priority is 8 or 9. Activation indication with priority class 10 AI10 1101 INFO 4 received, D-channel priority is 10 or 11. Deactivation confirmation DC 1111 Clocks are disabled if CFS bit of register MODE1 is set to ’1’, quiescent state Data Sheet 65 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.1.4 Infos on S/T (TE, LT-T) Receive Infos on S/T (Downstream) Name Abbr. Description INFO 0 i0 No signal on S/T INFO 2 i2 4 kHz frame A=’0’ INFO 4 i4 4 kHz frame A=’1’ INFO X ix Any signal except INFO 2 or INFO 4 Transmit Infos on S/T (Upstream) Name Abbr. Description INFO 0 i0 No signal on S/T INFO 1 i1 Continuous bit sequence of the form ’00111111’ INFO 3 i3 4 kHz frame Test INFO 1 it1 SSP - Send Single Pulses Test INFO 2 it2 SCP - Send Continuous Pulses Data Sheet 66 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.2 State Machine LT-S Mode 3.5.2.1 State Transition Diagram (LT-S) RST TIM RES TIM DR Reset i0 RES DR G4 Pend. Deact. 1) ARD * DR i0 DC DI ARD1) Test Mode i i0 it (i0*16ms)+32ms Any State SSP TIM SCP DC * SSP SCP Any State DR G4 Wait for DR i0 * DC DI DC TIM 2) DR G1 Deactivated i0 i0 (i0*8ms)+ARD1) DC AR ARD G2 Pend. Act. i2 DR i3 i3 DC RSY ARD G2 Lost Framing S/T i2 i3 i3 AI i3 DC ARD G3 Activated i4 DR i3 DR 1) ARD = AR or ARL 2) DI if i0 TIM if i0 s tatem_lts _s .v s d Figure 36 State Transition Diagram (LT-S) Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’ itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’ directly. Data Sheet 67 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.2.2 States (LT-S) G1 Deactivated The transceiver is not transmitting. There is no signal detected on the S/T interface, and no activation command is received in the C/I channel. The clocks are deactivated if MODE1.CFS is set to 1. Activation is possible from the S/T interface and from the IOM2 interface. G2 Pending Activation As a result of an INFO 0 detected on the S/T line or an ARD command, the transceiver begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise reception of INFO 3 is to be implemented in software. In case of an ARL command, loop 2 is closed. G3 Activated Normal state where INFO 4 is transmitted to the S/T-interface. The transceiver remains in this state as long as neither a deactivation nor a test mode is requested, nor the receiver looses synchronism. When receiver synchronism is lost, INFO 2 is sent automatically. After reception of INFO 3, the transmitter keeps on sending INFO 4. G2 Lost Framing This state is reached when the transceiver has lost synchronism in the state G3 activated. G4 Pending Deactivation This state is triggered by a deactivation request DR. It is an unstable state: indication DI (state “G4 Wait for DR.”) is issued by the transceiver when: either INFO 0 is received for a duration of 16 ms, or an internal timer of 32 ms expires. G4 Wait for DR Final state after a deactivation request. The transceiver remains in this state until DC is issued. Unconditional States Test mode - SSP Single alternating pulses are sent on the S/T-interface. Data Sheet 68 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Test mode - SCP Continuous alternating pulses are sent on the S/T-interface. 3.5.2.3 C/I Codes (LT-S) Command Abbr. Code Remark Deactivation Request DR 0000 DR - Deactivation Request. Initiates a complete deactivation from the exchange side by transmitting INFO 0. Reset RES 0001 Reset of state machine. Transmission of INFO 0. No reaction to incoming infos. RES is an unconditional command. Send Single Pulses SSP 0010 Send Single Pulses. Send Continuous Pulses SCP 0011 Send Continuous Pulses. Activation Request AR 1000 Activation Request. This command is used to start an exchange initiated activation. Activation Request Loop ARL 1010 Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface. Deactivation Confirmation DC 1111 Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of INFO 0 enabled). Indication Abbr. Code Remark Timing TIM 0000 Interim indication during activation procedure in G1. Receiver not Synchronous RSY 0100 Receiver is not synchronous Activation Request AR 1000 INFO 0 received from terminal. Activation proceeds. Illegal Code Violation CVR 1011 Illegal code violation received. This function has to be enabled in TR_CONF0.EN_ICV. Data Sheet 69 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Indication Code Remark Activation Indication AI 1100 Synchronous receiver, i.e. activation completed. Deactivation Indication 1111 Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request 3.5.2.4 Abbr. DI Infos on S/T (LT-S) Receive Infos on S/T (Downstream) I0 INFO 0 detected I0 Level detected (signal different to I0) I3 INFO 3 detected I3 Any INFO other than INFO 3 Transmit Infos on S/T (Upstream) I0 INFO 0 I2 INFO 2 I4 INFO 4 It Send Single Pulses (SSP). Send Continuous Pulses (SCP). Data Sheet 70 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.3 State Machine NT Mode 3.5.3.1 State Transition Diagram (NT) RST TIM RES TIM DR Reset i0 ARD i0 DI Any State ARD1) SSP TIM SCP Test Mode i i0 it (i0*16ms)+32ms DC RES DR G4 Pend. Deact. 1) * DR DC DR * SSP SCP Any State G4 Wait for DR i0 * DC DR DI DC TIM 3) G1 Deactivated ARD1) i0 i0 (i0*8ms) AR DC G1 i0 Detected i0 DR * ARD1) AR ARD G2 Pend. Act i2 DR i3 i3 AID RSY ARD G2 Lost Framing S/T i2 i3 i3*ARD AI i3*ARD1) i3*AID2) ARD G2 Wait for AID RSY i2 DR i3 1) AID2) RSY DR RSY RSY G3 Lost Framing U i2 * ARD1) AID2) i3*AID2) ARD1) AI AID G3 Activated RSY ARD = AR or ARL AID =AI or AIL 3) DI if i0 TIM if i0 2) i4 DR i3 s tatem_n t_ s .v s d Figure 37 Data Sheet State Transition Diagram (NT) 71 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’ itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’ directly. 3.5.3.2 States (NT) G1 Deactivated The transceiver is not transmitting. There is no signal detected on the S/T-interface, and no activation command is received in the C/I channel. The clocks are deactivated if the bit MODE1.CFS is set to 1. Activation is possible from the S/T interface and from the IOM-2 interface. G1 I0 Detected An INFO 0 is detected on the S/T-interface, translated to an “Activation Request” indication in the C/I channel. The transceiver is waiting for an AR command, which normally indicates that the transmission line upstream (usually a two-wire U interface) is synchronized. G2 Pending Activation As a result of the ARD command, an INFO 2 is sent on the S/T-interface. INFO 3 is not yet received. In case of ARL command, loop 2 is closed. G2 wait for AID INFO 3 was received, INFO 2 continues to be transmitted while the transceiver waits for a “switch-through” command AID from the device upstream. G3 Activated INFO 4 is sent on the S/T-interface as a result of the “switch through” command AID: the B and D-channels are transparent. On the command AIL, loop 2 is closed. G2 Lost Framing S/T This state is reached when the transceiver has lost synchronism in the state G3 activated. G3 Lost Framing U On receiving an RSY command which usually indicates that synchronization has been lost on the two-wire U interface, the transceiver transmits INFO 2. Data Sheet 72 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks G4 Pending Deactivation This state is triggered by a deactivation request DR, and is an unstable state. Indication DI (state “G4 wait for DR”) is issued by the transceiver when: either INFO 0 is received for a duration of 16 ms or an internal timer of 32 ms expires. G4 wait for DR Final state after a deactivation request. The transceiver remains in this state until DC is issued. Unconditional States Test Mode SSP Send Single Pulses Test Mode SCP Send Continuous Pulses 3.5.3.3 C/I Codes (NT) Command Abbr. Code Remark Deactivation Request DR 0000 DR - Deactivation Request. Initiates a complete deactivation from the exchange side by transmitting INFO 0. Unconditional command. Reset RES 0001 Reset of state machine. Transmission of INFO 0. No reaction to incoming infos. RES is an unconditional command. Send Single Pulses SSP 0010 Send Single Pulses. Send Continuous Pulses SCP 0011 Send Continuous Pulses. Receiver not Synchronous RSY 0100 Receiver is not synchronous Activation Request AR 1000 Activation Request. This command is used to start an exchange initiated activation. Activation Request Loop ARL 1010 Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface. Data Sheet 73 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Command Code Remark Activation Indication AI 1100 Synchronous receiver, i.e. activation completed. Activation Indication AIL Loop 1110 Activation Indication Loop Deactivation Confirmation DC 1111 Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of INFO 0 enabled). Indication Abbr. Code Remark Timing TIM 0000 Receiver not Synchronous RSY 0100 Receiver is not synchronous Activation Request AR 1000 INFO 0 received from terminal. Activation proceeds. Illegal Code Violation CVR 1011 Illegal code violation received. This function has to be enabled in TR_CONF0.EN_ICV. Activation Indication AI 1100 Synchronous receiver, i.e. activation completed. Deactivation Indication 1111 Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request Data Sheet Abbr. DI Interim indication during deactivation procedure 74 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.5.4 Command / Indicate Channel Codes (C/I0) - Overview The table below presents all defined C/I0 codes. A command needs to be applied continuously until the desired action has been initiated. Indications are strictly state orientated. Refer to the state diagrams in the previous sections for commands and indications applicable in various states. Code TE/LT-T LT-S NT Cmd Ind Cmd Ind Cmd Ind 0 0 0 0 TIM DR DR TIM DR TIM 0 0 0 1 RES RES RES – RES – 0 0 1 0 SSP TMA SSP – SSP – 0 0 1 1 SCP SLD SCP – SCP – 0 1 0 0 – RSY – RSY RSY RSY 0 1 0 1 – DR6 – – – – 0 1 1 0 – – – – – – 0 1 1 1 – PU – – – – 1 0 0 0 AR8 AR AR AR AR AR 1 0 0 1 AR10 – – – – – 1 0 1 0 ARL ARL ARL – ARL – 1 0 1 1 – CVR – CVR – CVR 1 1 0 0 – AI8 – AI AI AI 1 1 0 1 – AI10 – – – – 1 1 1 0 – AIL – – AIL – 1 1 1 1 DI DC DC DI DC DI Data Sheet 75 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.6 Control Procedures 3.6.1 Example of Activation/Deactivation An example of an activation/deactivation of the S/T interface initiated by the terminal with the time relationships mentioned in the previous chapters is shown in Figure 38. NT/Linecard TE INFO 0 INFO 1 RSY max. 6 ms AR INFO 2 INFO 3 AR 0.5 ms INFO 4 AI DR 16 ms INFO 0 INFO 0 A_DEACT.DRW Figure 38 Data Sheet Example of Activation/Deactivation Initiated by the Terminal 76 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.6.2 Activation initiated by the Terminal INFO 1 has to be transmitted as long as INFO 0 is received. INFO 0 has to be transmitted thereafter as long as no valid INFO (INFO 2 or INFO 4) is received. After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started. Data can be transmitted if INFO 4 has been received. µC Interface TE S/T Interface NT INFO 0 TDDIS='1', XINF='010' INFO 1 INFO 2 RINF='01' XINF='000' T1TE INFO 0 RINF='10' INFO 3 XINF='011' INFO 4 RINF='11' T2TE TDDIS='0' INFO 0 RINF='00' TDDIS='1', XINF='000' T3TE INFO 0 INFO 0 T1TE: 2 to 6 frames (0.5 ms to 1.5 ms) T2TE: 2 frames (0.5 ms) 4 frames (1 ms) T3TE: act_deac_te-ext_s.vsd Figure 39 Example of Activation/Deactivation initiated by the Terminal (TE). Activation/Deactivation completely under Software Control Note: RINF and XINF are Receive- and Transmit-INFOs of the registers TR_STA TR_CMD. Data Sheet 77 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.6.3 Activation initiated by the Network Termination NT INFO 0 has to be transmitted as long as no valid INFO (INFO 2 or INFO 4) is received. After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started. Data can be transmitted if INFO 4 has been received. µC Interface TE S/T Interface NT INFO 0 RINF='01' INFO 2 T1TE RINF='10' TDDIS='1', XINF='011' INFO 3 INFO 4 RINF='11' T2TE TDDIS='0' INFO 0 RINF='00' T3TE TDDIS='1', XINF='000' INFO 0 INFO 0 T1TE: 2 to 6 S/T frames (0.5 ms to 1.5 ms) 2 S/T frames (0.5 ms) T2TE: 4 S/T frames (1 ms) T3TE: act_deac_lt_ext_s.vsd Figure 40 Example of Activation/Deactivation initiated by the Network Termination (NT). Activation/Deactivation completely under Software Control Note: RINF and XINF are Receive- and Transmit-INFOs of the registers TR_STA TR_CMD. Data Sheet 78 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.7 IOM-2 Interface The SBCX-X supports the IOM-2 interface in linecard mode and in terminal mode with single clock and double clock. The IOM-2 interface consists of four lines: FSC, DCL, DD and DU. The rising edge of FSC indicates the start of an IOM-2 frame. The DCL and the BCL clock signals synchronize the data transfer on both data lines DU and DD. The DCL is twice the bit rate, the BCL rate is equal to the bit rate. The bits are shifted out with the rising edge of the first DCL clock cycle and sampled at the falling edge of the second clock cycle. The IOM-2 interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR register. TE Mode A DCL signal and BCL signal (pin BCL/SCLK) output is provided and the FSC signal is generated by the receive DPLL which synchronizes it to the received S/T frame. The BCL clock together with the two serial data strobe signals (SDS1, SDS2) can be used to connect time slot oriented standard devices to the IOM-2 interface. If the transceiver is disabled (TR_CON.DIS_TR) the DCL and FSC pins become input. In this case the clock mode bit (IOM_CR.CLKM) selects between a double clock and a single clock input for DCL. The clock rate/frequency of the IOM-2 signals in TE mode are: DD, DU: 768 kbit/s FSC (o): 8 kHz DCL (o): 1536 kHz (double clock rate) BCL (o): 768 kHz (single clock rate) Option - Transceiver disabled (DIS_TR = ’1’): FSC (i): 8 kHz DCL (i): 1536 ... 4096 kHz, in steps of 512 kHz (double clock rate) LT-S, LT-T, NT, iNT Mode The IOM-2 clock signals FSC and BCL are input. In LT-T mode a 1536 kHz output clock synchronous to S is provided at pin SCLK which can directly be connected to the DCL input. DD, DU: FSC (i): DCL (i): SCLK (o): data rate = DCL/2 kbit/s (LT-T mode) 8 kHz 512 ... 4096 kHz, in steps of 512 kHz (double clock rate) 1536 kHz (LT-T mode), BCL derived via DCL/2 (LT-S/NT mode) Note: In all modes the direction of the data lines DU and DD is not fix but depending on the timeslot which can be seen in the figures below. Data Sheet 79 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks IOM-2 Frame Structure (TE Mode) The frame structure on the IOM-2 data ports (DU, DD) of a master device in IOM-2 terminal mode is shown in Figure 41. Figure 41 IOMÒ-2 Frame Structure in Terminal Mode The frame is composed of three channels • Channel 0 contains 144-kbit/s of user and signaling data (2B + D), a MONITOR programming channel (MON0) and a command/indication channel (CI0) for control and programming of the layer-1 transceiver. • Channel 1 contains two 64-kbit/s intercommunication channels (IC) plus a MONITOR and command/indicate channel (MON1, CI1) to program or transfer data to other IOM-2 devices. • Channel 2 is used for the TlC-bus access. Only the command/indicate bits are specified in this channel. Data Sheet 80 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks IOM-2 Frame Structure (LT-S, LT-T Modes) This mode is used in LT-S and LT-T applications. The frame is a multiplex of up to eight IOM-2 channels (DCL = 4096 kHz, see Figure 42), each of which has the structure described above. The reset value for assignment to one of the eight channels (0 to 7) is done via pin strapping (CH0-2), however the host can reprogram the selected timeslot in DCH_TSDP.TSS. 125 µ s FSC DCL DD IOM R CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH0 DU IOM CH0 R CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH0 B1 Figure 42 B2 MONITOR D C/I MM RX ITD09635 Multiplexed Frame Structure of the IOM-2 Interface in Non-TE Timing Mode IOM-2 Frame Structure (NT Mode) In NT mode one IOM-2 channel is used (DCL=512 kHz). The channel structure is the same as described above. Data Sheet 81 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.7.1 IOM-2 Handler The IOM-2 handler offers a great flexibility for handling the data transfer between the different functional units of the SBCX-X and voice/data devices connected to the IOM-2 interface. Additionally it provides a microcontroller access to all timeslots of the IOM-2 interface via the four controller data access registers (CDA). Figure 43 shows the architecture of the IOM-2 handler. For illustrating the functional description it contains all configuration and control registers of the IOM-2 handler. A detailed register description can be found in Chapter 4.3. The PCM data of the functional units • Transceiver (TR) and the • Controller data access (CDA) can be configured by programming the time slot and data port selection registers (TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can be assigned to each of the 32 PCM time slots of the IOM-2 frame. With the DPS bit (Data Port Selection) the output of each functional unit is assigned to DU or DD respectively. The input is assigned vice versa. With the data control registers (xxx_CR) the access to the data of the functional units can be controlled by setting the corresponding control bits (EN, SWAP). The IOM-2 handler also provides access to the • MONITOR channel (MON) • C/I channels (C/I0, C/I1) and • TIC bus (TIC) The access to these channels is controlled by the register MON_CR and DCI_CR. The IOM-2 interface with the two Serial Data Strobes (SDS1,2) is controlled by the control registers IOM_CR, SDS1_CR and SDS2_CR. The reset configuration of the SBCX-X IOM-2 handler corresponds to the defined frame structure and data ports of a master device in IOM-2 terminal mode (see Figure 41). Data Sheet 82 2003-02-04 83 CDA_TSDPxy CDAx_CRx MCDA STI MSTI ASTI ( DPS, TSS, EN_TBM, SWAP, EN_I1/0, EN_O1/0, MCDAxy, STIxy, STOVxy, ACKxy ) CDA Control CDA Data BCL / SCLK FSC DD DU MON Handler IOM-2 Interface Microcontroller Interface C/I0 Data TIC C/I1 DCI_CR (DPS_CI1, EN_CI1) (CS2-0) DCIC_CR C/I1 C/I Data Control C/I0 IOM_CR (TIC_DIS) (DPS, CS2-0, EN_MON) MON_CR TIC Bus Disable Monitor Data EN_BCL, CLKM, DIS_OD, DIS_IOM, DIOM_INV, DIOM_SDS DCL TIC Bus Data Control Monitor Data Note: The registers shown above are used to control the corresponding functional block (e.g. programming of timeslot, data port, enabling/disabling, etc.) CDA10 CDA11 CDA20 CDA21 CDA Registers Controller Data Access (CDA) IOM_CR SDS1_CR SDS2_CR C/I0 Data Data Sheet C/I1 Data Figure 43 SDS2 SDS1 ( ENS_TSS, ENS_TSS+1, ENS_TSS+3, TSS, SDS_BCL TR_TSDP_BC1 TR_TSDP_BC2 TRC_CR (DPS, TSS, CS2-0, EN_D, EN_B1R, EN_B1X, EN_B2R, EN_B2X ) Control Transceiver Data Access D, B1, B2, C/I0 Data IOM-2 Handler 3186_07 D-channel RX/TX B1-channel RX B1-channel TX B2-channel RX B2-channel TX Transceiver Data TR SBCX-X PEB 3081 Description of Functional Blocks . Architecture of the IOM Handler (Example Configuration) 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks 3.7.1.1 Controller Data Access (CDA) With its four controller data access registers (CDA10, CDA11, CDA20, CDA21) the SBCX-X IOM-2 handler provides a very flexible solution for the host access to up to 32 IOM-2 time slots. The functional unit CDA (controller data access) allows with its control and configuration registers • looping of up to four independent PCM channels from DU to DD or vice versa over the four CDA registers • shifting of two independent PCM channels to another two independent PCM channels on both data ports (DU, DD). Between reading and writing the data can be manipulated (processed with an algorithm) by the microcontroller. If this is not the case a switching function is performed • monitoring of up to four time slots on the IOM-2 interface simultaneously • microcontroller read and write access to each PCM timeslot The access principle which is identical for the two channel register pairs CDA10/11 and CDA20/21 is illustrated in Figure 44. Each of the index variables x,y used in the following description can be 1 or 2 for x and 0 or 1 for y. The prefix ’CDA_’ from the register names has been omitted for simplification. To each of the four CDAxy data registers a TSDPxy register is assigned by which the time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a time slot from 0...31 can be selected. With the DPS (Data Port Selection) bit the output of the CDAxy register can be assigned to DU or DD respectively. The time slot and data port for the output of CDAxy is always defined by its own TSDPxy register. The input of CDAxy depends on the SWAP bit in the control registers CRx. • If the SWAP bit = ’0’ (swap is disabled) the time slot and data port for the input and output of the CDAxy register is defined by its own TSDPxy register. • If the SWAP bit = ’1’ (swap is enabled) the input port and timeslot of the CDAx0 is defined by the TSDP register of CDAx1 and the input port and timeslot of CDAx1 is defined by the TSDP register of CDAx0. The input definition for timeslot and data port CDAx0 are thus swapped to CDAx1 and for CDAx1 swapped to CDAx0. The output timeslots are not affected by SWAP. The input and output of every CDAxy register can be enabled or disabled by setting the corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is disabled the output value in the register is retained. Usually one input and one output of a functional unit (transceiver, HDLC controller, CDA register) is programmed to a timeslot on IOM-2 (e.g. for B-channel transmission in upstream direction the HDLC controller writes data onto IOM and the transceiver reads data from IOM). For monitoring data in such cases a CDA register is programmed as described below under “Monitoring Data”. Besides that none of the IOM timeslots must be assigned more than one input and output of any functional unit. Data Sheet 84 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks . TSa TSb DU Control Register 1 CDAx0 0 1 1 1 1 1 CDAx1 1 1 0 CDA_TSDPx1 Enable input * output (EN_I1) (EN_O1) Input Swap (SWAP) input * (EN_I0) 1 Time Slot Selection (TSS) 0 Data Port Selection (DPS) Time Slot Selection (TSS) CDA_CRx 0 Enable output (EN_O0) Data Port Selection (DPS) CDA_TSDPx0 1 DD TSa TSb IOM_HAND.FM4 x = 1 or 2; a,b = 0...31 *) In the normal mode (SWAP=0) the input of CDAx0 and CDAx1 is enabled via EN_I0 and EN_I1, respectively. If SWAP=1 EN_I0 controls the input of CDAx1 and EN_I1 controls the input of CDAx0. The output control (EN_O0 and EN_O1) is not affected by SWAP. Figure 44 Data Access via CDAx1 and CDAx2 Register Pairs Looping and Shifting Data Figure 45 gives examples for typical configurations with the above explained control and configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers TSDPxy or CDAx_CR: a) looping IOM-2 time slot data from DU to DD or vice versa (SWAP = 0) b) shifting data from TSa to TSb and TSc to TSd in both transmission directions (SWAP = 1) c) switching data from TSa to TSb and looping from DU to DD or TSc to TSd and looping from DD to DU respectively TSa is programmed in TSDP10, TSb in TSDP11, TSc in TSDP20 and TSd in TSDP21. It should also be noted that the input control of CDA registers is swapped if SWAP=1 while the output control is not affected (e.g. for CDA11 in example a: EN_I1=1 and EN_O1=1, whereas for CDA11 in example b: EN_I0=1 and EN_O1=1). Data Sheet 85 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks a) Looping Data TSa TSb TSc TSd CDA10 CDA11 CDA20 CDA21 TSc ’1’ TSd ’1’ DU DD .TSS: TSa TSb .DPS ’0’ ’0’ .SWAP ’0’ ’0’ b) Shifting Data TSa TSb TSc TSd CDA10 CDA11 CDA20 CDA21 DU DD .TSS: TSa TSb .DPS ’0’ ’1’ .SWAP ’1’ c) Switching Data TSa TSb CDA10 CDA11 TSc ’0’ TSd ’1’ ’1’ TSc TSd CDA20 CDA21 DU DD .TSS: TSa TSb .DPS ’0’ ’0’ .SWAP ’1’ Figure 45 TSc ’1’ TSd ’1’ ’1’ Examples for Data Access via CDAxy Registers a) Looping Data b) Shifting (Switching) Data c) Switching and Looping Data Data Sheet 86 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks Figure 46 shows the timing of looping TSa from DU to DD (a = 0...31) via CDAxy register. TSa is read in the CDAxy register from DU and is written one frame later on DD. . a = 0...31 FSC DU TSa TSa µC *) DD TSa STOV ACK WR RD STI CDAxy TSa *) if access by the µC is required Figure 46 Data Access when Looping TSa from DU to DD Figure 47 shows the timing of shifting data from TSa to TSb on DU (DD). In Figure 47a) shifting is done in one frame because TSa and TSb didn’t succeed direct one another (a, b = 0...29 and b ³ a+2. In Figure 47b) shifting is done from one frame to the following frame. This is the case when the time slots succeed one other (b = a+1) or b is smaller than a (b < a). At looping and shifting the data can be accessed by the controller between the synchronous transfer interrupt (STI) and the status overflow interrupt (STOV). STI and STOV are explained in the section ’Synchronous Transfer’. If there is no controller intervention the looping and shifting is done autonomous. Data Sheet 87 2003-02-04 SBCX-X PEB 3081 Description of Functional Blocks a) Shifting TSa ® TSb within one frame (a,b: 0...31 and b ³ a+2) FSC DU (DD) TSa TSa TSb µC *) STI STOV ACK WR RD STI CDAxy b) Shifting TSa ® TSb in the next frame (a,b: 0...31 and (b = a+1 or b
PEB 3081 F V1.4 价格&库存

很抱歉,暂时无法提供与“PEB 3081 F V1.4”相匹配的价格&库存,您可以联系我们找货

免费人工找货